Scientists design solar cell that captures nearly all energy of solar spectrum
Page 1 of 1
Scientists design solar cell that captures nearly all energy of solar spectrum
Scientists design solar cell that captures nearly all energy of solar spectrum
More at link:
https://www.sciencedaily.com/releases/2017/07/170711220514.htm
Date:
July 11, 2017
Source:
George Washington University
Summary:
Scientists have designed and constructed a prototype for a new solar cell that integrates multiple cells stacked into a single device capable of capturing nearly all of the energy in the solar spectrum.
Stacked solar cell.
Credit: Matthew Lumb
A George Washington University researcher helped design and construct a prototype for a new solar cell that integrates multiple cells stacked into a single device capable of capturing nearly all of the energy in the solar spectrum.
The new design, which converts direct sunlight to electricity with 44.5 percent efficiency, has the potential to become the most efficient solar cell in the world.
The approach is different from the solar panels commonly seen on rooftops or in fields. The new device uses concentrator photovoltaic (CPV) panels that use lenses to concentrate sunlight onto tiny, micro-scale solar cells. Because of their small size -- less than one millimeter square -- solar cells that utilize more sophisticated materials can be developed cost effectively.
The study, "GaSb-based Solar Cells for Full Solar Spectrum Energy Harvesting," was published in the journal Advanced Energy Materials.
The stacked cell acts almost like a sieve for sunlight, with the specialized materials in each layer absorbing the energy of a specific set of wavelengths, said Matthew Lumb, lead author of the study and a research scientist at the School of Engineering and Applied Science. By the time the light is funneled through the stack, just under half of the available energy has been converted into electricity. By comparison, the most common solar cell today converts only a quarter of the available energy into electricity.
"Around 99 percent of the power contained in direct sunlight reaching the surface of Earth falls between wavelengths of 250 nanometers and 2,500 nanometers, but conventional materials for high-efficiency multi-junction solar cells cannot capture this entire spectral range," Dr. Lumb said. "Our new device is able to unlock the energy stored in the long-wavelength photons, which are lost in conventional solar cells, and therefore provides a pathway to realizing the ultimate multi-junction solar cell."
Scientists have worked to develop more efficient solar cells for years, however this approach has two novel aspects. It uses a family of materials based on gallium antimonide (GaSb) substrates, which are usually found in applications for infrared lasers and photodetectors. These GaSb-based solar cells are assembled into a stacked structure along with high efficiency solar cells grown on conventional substrates that capture shorter wavelength solar photons. In addition, the stacking procedure uses a technique known as transfer-printing, which enables three dimensional assembly of these tiny devices with a high degree of precision.
This particular solar cell is very expensive, but researchers believe it was important to show the upper limit of what is possible in terms of efficiency. Despite the current costs of the materials involved, the technique used to create the cells shows promise, researchers say. Eventually a similar product enabled by cost reductions from very high solar concentration levels and technology to recycle the expensive growth substrates could be brought to market.
https://www.sciencedaily.com/releases/2017/07/170711220514.htm
More at link:
https://www.sciencedaily.com/releases/2017/07/170711220514.htm
Date:
July 11, 2017
Source:
George Washington University
Summary:
Scientists have designed and constructed a prototype for a new solar cell that integrates multiple cells stacked into a single device capable of capturing nearly all of the energy in the solar spectrum.
Stacked solar cell.
Credit: Matthew Lumb
A George Washington University researcher helped design and construct a prototype for a new solar cell that integrates multiple cells stacked into a single device capable of capturing nearly all of the energy in the solar spectrum.
The new design, which converts direct sunlight to electricity with 44.5 percent efficiency, has the potential to become the most efficient solar cell in the world.
The approach is different from the solar panels commonly seen on rooftops or in fields. The new device uses concentrator photovoltaic (CPV) panels that use lenses to concentrate sunlight onto tiny, micro-scale solar cells. Because of their small size -- less than one millimeter square -- solar cells that utilize more sophisticated materials can be developed cost effectively.
The study, "GaSb-based Solar Cells for Full Solar Spectrum Energy Harvesting," was published in the journal Advanced Energy Materials.
The stacked cell acts almost like a sieve for sunlight, with the specialized materials in each layer absorbing the energy of a specific set of wavelengths, said Matthew Lumb, lead author of the study and a research scientist at the School of Engineering and Applied Science. By the time the light is funneled through the stack, just under half of the available energy has been converted into electricity. By comparison, the most common solar cell today converts only a quarter of the available energy into electricity.
"Around 99 percent of the power contained in direct sunlight reaching the surface of Earth falls between wavelengths of 250 nanometers and 2,500 nanometers, but conventional materials for high-efficiency multi-junction solar cells cannot capture this entire spectral range," Dr. Lumb said. "Our new device is able to unlock the energy stored in the long-wavelength photons, which are lost in conventional solar cells, and therefore provides a pathway to realizing the ultimate multi-junction solar cell."
Scientists have worked to develop more efficient solar cells for years, however this approach has two novel aspects. It uses a family of materials based on gallium antimonide (GaSb) substrates, which are usually found in applications for infrared lasers and photodetectors. These GaSb-based solar cells are assembled into a stacked structure along with high efficiency solar cells grown on conventional substrates that capture shorter wavelength solar photons. In addition, the stacking procedure uses a technique known as transfer-printing, which enables three dimensional assembly of these tiny devices with a high degree of precision.
This particular solar cell is very expensive, but researchers believe it was important to show the upper limit of what is possible in terms of efficiency. Despite the current costs of the materials involved, the technique used to create the cells shows promise, researchers say. Eventually a similar product enabled by cost reductions from very high solar concentration levels and technology to recycle the expensive growth substrates could be brought to market.
https://www.sciencedaily.com/releases/2017/07/170711220514.htm
Similar topics
» New Solar-Energy Device is 100 Times More Efficient Than Previous Design
» MIT's new nano-photo crystal cell -- better than silicon solar cells
» Czech scientists design a new way to control the properties of molecules - Graphene
» Scientists explore the origins of energy in chemical reactions using experimental quantum chemistry
» Subatomic microscopy as a key to materials design
» MIT's new nano-photo crystal cell -- better than silicon solar cells
» Czech scientists design a new way to control the properties of molecules - Graphene
» Scientists explore the origins of energy in chemical reactions using experimental quantum chemistry
» Subatomic microscopy as a key to materials design
Page 1 of 1
Permissions in this forum:
You can reply to topics in this forum