Miles Mathis' Charge Field
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Half spheres for molecular circuits

Go down

Half spheres for molecular circuits Empty Half spheres for molecular circuits

Post by Cr6 Tue Mar 10, 2015 1:39 am

Half spheres for molecular circuits

Feb 16, 2015

Half spheres for molecular circuits HalfspheresfEnlarge
Credits: SISSA/CNR IOM  
Corannulene is a carbon molecule with a unique shape (similar to the better known fullerene) and promising properties. A team of scientists from SISSA and the University of Zurich carried out computer simulations of the molecule's properties and discovered that it might help overcome the difficulties building molecular circuits (i.e., of the size of molecules). The study has just been published in Physical Chemistry Chemical Physics.

Imagine taking a fullerene (C60) and cutting it in half like a melon. What you get is a corannulene (C20H10), a molecule that, according to a just-published study conducted with SISSA's collaboration, could be an important component of future "molecular circuits," that is, circuits miniaturized to the size of molecules, to be used for various kinds of electronic devices (transistors, diodes, etc.).

Fullerene is a very popular molecule: also called buckybowl, it is formed of carbon atoms arranged in a hexagonal network shaped like a hollow sphere. It is an intensely studied material that displays interesting properties in different fields. Even though c60 is known to contain "empty states" (of a very special nature known as buckybowl superatom states, BSS) capable of accepting electrons, these states are found at very high energies, a feature that makes them difficult to exploit in electronic devices.

The electrons in electronic circuits have to be able to travel easily. "In fullerene the energy levels of the BSS type capable of accommodating 'travelling electrons' are difficult to achieve energetically," explains Layla Martin-Samos, researcher at Democritos IOM-CNR and SISSA and among the authors of the study published in Physical Chemistry Chemical Physics. "Corannullene, on the other hand, seems to be much better suited to the purpose, as demonstrated by our calculations."

...more at link.

http://phys.org/news/2015-02-spheres-molecular-circuits.html#inlRlv
http://phys.org/news/2015-03-buckybomb-potential-power-nanoscale-explosives.html#ajTabs

Cr6
Admin

Posts : 1178
Join date : 2014-08-09

https://milesmathis.forumotion.com

Back to top Go down

Back to top

- Similar topics

 
Permissions in this forum:
You can reply to topics in this forum